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We study such nonlinear mappings x, +l = F(x,; bet ) of an interval I into itself 
for which the Feigenbaum scaling laws hold (i.e., for which bcr is an accumula- 
tion point of bifurcation points). Let x 0 be a random variable with some 
absolutely continuous distribution in I. We show in particular that (i) the 
geometric average distance of x, from the nearest point of the attractor de- 
creases like n - 1.93387; (ii) the geometric average of [~xn/~Xo[ increases like n~176 
(iii) the geometric mean distance Ix, - y , [  between the iterates of two close-by 
points Xo, Yo asymptotically tends towards a value ~[x  0 -.yo[ 0"77. These--and 
other--properties are also borne out from a simple probabilistic model which 
depicts the evolution as a random walklike process. 

KEY WORDS: One-dimensional maps; onset of turbulence; Feigenbaum 
scaling laws; critical phenomena; universality; sensitivity to initial condi- 
tions; approach towards fractal attractors. 

1. INTRODUCTION 

Simple  n o n l i n e a r  m a p p i n g s  

xn+ 1 = F ( x , ;  b)  (1.1) 

of a n  in te rva l  I i n to  itself have  a n u m b e r  of very  r e m a r k a b l e  proper t ies  
wh ich  have  recen t ly  b e e n  the  sub jec t  of  n u m e r o u s  studies.  (~-9) T w o  typica l  

examples ,  s tud ied  in  this paper ,  are  

x , + ,  = b x n ( 1  - x , )  (1.2) 

a n d  

x , +  1 = b x , ( 1 -  x~) (1.3) 
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Both examples have infinitely many sequences of bifurcation points (bi,k; 
k = 0, 1, 2, 3 . . . .  ) at which a stable cycle of period i • 2 k turns into one of 
period i • 2 k+ 1. At the limit points 

bi c r  ----- lira b i k (1.4) 
�9 k---~ oo ' 

the attractor is no longer periodic but is a Cantor set, and one finds scaling 
laws (5'6) which are very reminiscent of critical phenomena. 

These laws are universal at least within the class of functions F(x; b) 
which are strictly monotonic in x except for a single parabolic maximum. 
But they also seem to apply at the onset of turbulence in many physical 
phenomena such as, e.g., the Benard problem. O~ 

A typical feature of critical phenomena is that laws which are expo- 
nential away from the critical point become power laws, with universal 
anomalous exponents, at the critical point. If the above analogy is not 
superficial, we should observe similar power laws for critical mappings as 
well. 

In the present paper, we shall study three closely related aspects of 
critical mappings. These are the sensitivity to initial conditions, the speed of 
approach towards the attractor, and the behavior of the derivative ~x~(Xo, b 
= bcr)/~Xo, all of them for n --> ~ .  

In the periodic regions, they are trivially related. Let us define as usual 
the Lyapounov characteristic exponent as 

X(Xo) = l ina In ~ (1.5) 

Since the maps considered are ergodic, with the attractor consisting of a 
finite number of points, X(X) is, for nearly al l  x, independent of x and 
negative. The distance between the iterates of (nearly) any two sufficiently 
close-by points x 0 and Yo thus decreases like 

A =_ [x~ -y,[n~,ooe n• X < 0 (1.6) 

Taking for Y0 a point of the attractor, one finds that also 

d n = inf Ixn-  y l ~ e  "x (1.7) 
y ~ a t t r a c t o r  

In the chaotic regions, the situation is similar. Again we have 

for nearly all x o, this time with X > 0. The distance between two arbitrary 
close points starts to increase according to Eq. (1.6). However, when 2~ n 
becomes of the same order of magnitude as some characteristic length of 
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the attractor, this increase has to stop and the average of A n stays indepen- 
dent of n during the further evolution. Remember that the attractor in the 
chaotic region consists in general of a set of disjoint intervals, the lengths of 
which determine this characteristic length. At the critical points, there is no 
analogous length scale, and limn_,o~(An) must be determined by A 0 (and by 
the total size of the attractor basin). 

Finally, consider the average distance from the attractor: for large n, 
the chance that xn does not fall onto the attractor decreases exponentially. 
Thus, the arithmetic mean distance decreases exponentially, too. The 
geometric mean distance, however, is exactly zero for sufficiently large n. 

As we have already said, we expect that the above exponential laws 
turn into power laws at the eritiealpoint. Thus we propose 

[ 0xn ~ n  Y (1.9) 

and 

( A~ for n --> oo (1.10) 
An ~ ~ A 0 �9 n ~ for 1 ~<[ n ~ A ( 8 - 1 ) / ~  

dn~n -~ (1.11) 

with three different universal exponents % 8, and r 
However, as we have seen, we must not, in general, expect the same 

behavior for geometric and for arithmetic mean values, indicating strong 
and irregular dependence on x 0 a n d / o r  on n. Indeed, a few short runs with 
any pocket calculator show that one has to be very careful in formulating 
relations like (1.9)-(1.11) more precisely. A typical plot of [~xn/OXo] for Eq. 
(1.2) with b = b l ,c r - -3 .5699456. . ,  for fixed x 0 and 1 < n < 1000, is 
shown in Fig. 1. One sees a very erratic behavior. The (geometric) Cesaro- 
type average 

ImffI=m ~xm l/n (1.12) 

shows, of course, a much smoother deportment, but still a power behavior 
is far from evident in Fig. 1. 

That  Eq. (1.9) must be taken with care is also seen from the estimate 
for the arithmetic average of IOxn/~Xo[, 

f dx oxn n~.,ooe c~ (1.13) 

which is proven in the Appendix. 
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Fig. 1. Values of IOxn/Oxol for a randomly chosen x 0 (= 0.1398025... ) for Eq. (1.2) with 
b = bn,cr = 3.56994567 . . . .  The continuous curve represents the (geometric) Cesaro average, 
Eq. (1.12). 

We shall argue in the following that  Eqs. (1.9)-(1.11) are valid and  
universal if they are unders tood as estimates for the geometric averages, 
with x 0 distributed according to any absolutely continuous distribution. 
The critical exponents are 

= 1.9338710 

T = 0.60 + 0.01 (1.14) 

8 -  r - 0 . 7 7 _  0.01 
E + 7  

The way in which x n approaches the (critical) at tractor  will be dis- 
cussed in the next section. In  Section 3, the behavior  of IOxn/OXo[ and the 
sensitivity to initial conditions will be investigated. In  both  of these sec- 
tions, only heuristic arguments  and Monte  Carlo calculations are used to 
support  our  claims. Thus any  additional piece of evidence in favor of them 
would be very welcome. 
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In Section 4, a random-walk-type model will be discussed which 
displays all essential features discussed above. Notice that critical mappings 
have no sensitive dependence on initial conditions in the sense of Guck- 
enheimer. (11) Nevertheless, on a more detailed level (as seen, e.g., in the 
behavior of ~x~/~Xo) they are sensitive, and correspondingly a probabilistic 
model is very natural. 

2. THE APPROACH TOWARDS A CRITICAL ATTRACTOR 

The attractor at a critical point is well known to be a Cantor set. (2) Let 
~0 be the point at which F(x) has its maximum. We shall assume ~0 = 0, 
which can always be achieved by a suitable shift of the origin. Then the 
attractor is just the set (9) (~n[n = 1 , 2 , 3 , . . .  }, where ~n is defined recur- 
sively through the equation 

~, = F ( ~ _ I ) ,  n > 1 (2.1)  

As an example, the attractor of the logistic equation (1.2) at b = bl,cr is 
shown in Fig. 2. 

Without loss of generality, we shall discuss only limit points of period 
2 k cycles. Cycles of period i • 2 k can be considered as period 2 k cycles of 
the ith iteration F(O(x) of F(x). An attractor at a bi,cr with i ~ 1 consists 
thus of i components for each of which the following discussion applies. 

Associated with this attractor is, as with any Cantor set, a hierarchy of 
intervals. Let us define the open intervals (k = 0, 1,2 . . . .  ; i =  1,2, 
3 . . . .  2 ~ ) 

Iki = [ ]~2"2k+i'~3"2k+i[ i f  ~2 .2k+ i  % ~ 3 . 2 k + /  (2.2) 
" ~ ]~3"2k+i'~2"2k+i[ 

J 0,1 

J1,2 J1.1 
I0,I 

J 2,2 J2,4 
I1,2 J2.3 ii,1 J2_~.t 

Fig. 2. T h e  a t t ractor  of  Eq. (1.2) at  b = bl,cr = 3.56994567 . . . .  
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and the closed intervals 

Jki = ( [~i '~2k+i]  if ~i %~2k+i (2 .3)  
' [ ~ 2 k + i , ~ i ]  

More instructive than these formal definitions is, presumably, a look at Fig. 
2. Furthermore, we define 

2 k 

Ik = U Ik,, (2.4) 
i=1 
2 k 

Jk = U Jk,, (2.5) 
i=1 

From Fig. 2 it is obvious that 
k - I  

J, = Jk u U B, for k > t (2.6) 
k ' = l  

The attractor can be characterized as 
oo 

Jo - U Ik = r"] Jk =: Joo (2.7) 
k=0  k 

Under the action of F, the intervals Jk,i with i < 2 k are mapped into 
Jk,i+l, while Jk,Ek-->Jk,1. Thus, if x E J  k, F(x )  will also be in Jk. On the 
other hand, it may happen that F ( x ) E  Jk although x f~ Jk" Thus every 
domain Jk acts like an absorbing state in the theory of Markov processes, 
attracting in this way nearly all trajectories. 

The only trajectories not attracted into any given Jk are the (repulsive) 
periodic orbits. Every domain I k contains exactly one such orbit of period 
2 k, with exactly one point x~i in each Ik, ;. 

Assume now that x 0 is distributed in J0 according to some absolutely 
continuous distribution Wo(Xo). We are interested in the distribution w n of 
x, for very large n, for which we have the recursion formula 

= f d x .  w , (x , )8 (xo+,  - F(Xn)) (2.8) w,+ l (Xn+ 1) 

As was shown by Feigenbaum, (6) the universality properties of critical 
mappings follow from the "renormalization group" equation 

r (2k+')(x) ~.~ - __1 r (2b(ax ) ,  a = 2.502907. . .  (2.9) 
a 

for x ~ 0 and k large. Here, F (") is the nth iterate of F. It follows that 

42, ~ - __1 ~ (2.10) O~ n 

1 I I k + l , 2 i  "~-~ - -  --~ k, i  (2.11) 
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and 

1 (2.12) J k + l , 2 ; ~  -- ~Jk , i  

for large k, and for n and i containing many factors of 2. 
In the following, we shall restrict ourselves to the Feigenbaum map 

g(x) for which these asymptotic relations hold exactly, i.e., for which in 
particular 

- • g(ax) (2.13) g(g(x)) = a 

and which is normalized by 

g(0) = 1 (2.14) 

Questions of universality will be discussed later. 
For the map g, we get 

z )  = f  xwo(_ x _ l,) 

On the whole real axis this is easily seen to be compatible with 

w2,(x ) = ew,(-  ax) (2.16) 

for any arbitrary constant e. However, the relation (2.16) implies that w, (x) 
is not concentrated in J0, contrary to our assumption. 

Nevertheless, we claim that Eq. (2.16) is asymptotically (for n ~  oo) 
consistent, provided that x E J1,2. Take z E J0,1 and assume Eq. (2.16) to be 
correct for some n. Then ( -  z/a) E Jl,2 and 

= e (  d x w . ( x ) ~ ( z  - g(x)) 
X ~ J o ,  l 

+ of_ x/o ,o.ldxw2"(- )8(z  - g(x))  (2.17) 
In the second integral, we cannot use Eq. (2.16), but asymptotically we 
expect anyhow that 

w2,(x),-~ooO fo rx  ~ I0,1 (2.18) 

and thus we get w2,+2(-z/a)~ cw,+l(Z ), Q.E.D. 
Finally, the constant e is fixed by the normalization condition 

fdxwn(X) = 1 (2.19) 

For simplicity, let us assume 

fx~j,.ffxw.(x) = fx~gl.ffxw.(x) (2.20) 
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Then 

and 

f dX W2n(X ) = 2s W2n(X ) 

_ fdxw.(x) (2.21) 

c = a / 2  (2.22) 

If the condition (2.20) does not hold, we repeat the same argument with 
g(x) replaced by g(2k)(x), and with Jo,1 replaced by J~,2 k. For sufficiently 
large k, the analog of Eq. (2.20) will be true to any wanted accuracy. 

We now propose that the above is not only compatible with Eq. (2.15), 
but that indeed it describes the asymptotic behavior for all absolutely 
continuous initial distributions Wo(X ). For an arbitrary critical map, we 
propose finally that w n (x) becomes universal for n --) oo and x ~ O, with 

W2n(X) .~---~ ~ ~ Wn(--OdX ) for x ~ 0  (2.23) 

We shall check this by the Monte Carlo calculations presented in this and 
in the following section. 

Consider now the integrals 

Pk(n) = s dx w~ (x) (2.24) 
x~lk 

They are the probabilities that a randomly chosen point x 0 gives an xn ~ I~. 
For the Feigenbaum map, the above yields 

ek(2n) ~ Pk- , (n)  for n >> 1 (2.25) 

This means that essentially the evolution corresponds to a pure shift of the 
distribution Pk(n) towards larger values of k, with 

In n (2.26) ( k )  ~ ~-~ + const 

For other critical maps, we observe that, for large n, only points x~ ~ 0 
(where w~ is universal) can jump from some I~ to an I k, (k' v ~ k) during an 
iteration. Thus we expect Eqs. (2.25) and (2.26) to be universal, too. 

In order to check this numerically, we have performed Monte Carlo 
calculations with Eq. (2) for b = bl,cr. We have chosen 105 starting points 
xl ~ J0,1 with a flat distribution. The resulting distributions Pk(n), shown in 
Fig. 3, clearly agree with Eq. (2.25) within the statistical errors, for n ~ 64. 
In this and in similar runs, we have also tried to check Eq. (2.23) directly. 
The results were fully compatible with it, but the large statistical errors did 
not allow for quantitative conclusions. 
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Pk In) 

/ ' ~ n  =/-. , - o , n = 1 6  r- ,  n = 6/-. r , ,n=256 ,.. n=102/, 

"i / 
0 2 /. 6 k 8 10 12 

Fig. 3. Probabilities Pk(n)  describing the chance that a randomly chosen x o will lead to 
x~ E 1 k. The lines connecting the points are drawn only to guide one's eyes. 

The decrease of the mean  distance f rom the at tractor,  Eq. (1.10), now 
follows straightforwardly.  The  geometr ical  average  of the lengths of the 
intervals Ig,~ for fixed k, 

2*: 

(/}k --- I I  IIk,il 2-k (2.27) 
i=1  

is numerical ly  found  to decrease with k like 

( l > ~ k Z  ~k (2.28) 

with ~ = 0.26172597 . . . .  This is clearly seen f rom the ratios 

r k = ( l > ~ / ( l > k _  l (2.29) 

shown in Table  I for Eq. (1.2) with b = bl,cr and  b = b3,cr--3.84943368 
. . . .  and  for  Eq. (1.3) with b = bl# r = 2.3002283 . . . .  For  b = b3,er, the 

a t t rac tor  consists of three pieces, which for  Eq. (1.2) are shown in Fig. 4. 
Each  of these pieces is similar to Fig. 2, and  in each one r k tends towards  
the universal  asympto t ic  value. F r o m  Eq. (2.23), the average  distance of x n 
f rom the a t t rac tor  is p ropor t iona l  to ( l~k with k ~ l n  n / l n  2. Thus  we obta in  

d . ~ n  -"  (2.30) 

with 

ln~, = 1.9338710 (2.31) 
e =  - ln2  " ' "  
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Table I. r k = (I)~/(l)k_l 

Eq. (1.2); b = b3,cr 

Eq. (1.3); b = bl,cr Band I Band II Band II1 

2 0.243 
3 0.2649 
4 0.261297 
5 0.261787 

0.2617178 
0.26172707 
0.261725828 
0.2617259907 

0.268 0.248 0.247 0.248 
0.2612 0.2640 0.2641 0.2640 
0.26179 0.26143 0.26141 0.26143 
0.261720 0.261769 0 .261771  0.261769 

0.2617267 0.2617203 0.2617201 0.2617203 
0.26172590 0 .26172675  0.26172676 0.26172674 
0.261725980 0.261725871 0.261725870 0.261725872 
0.2617259711 0.261725986 0,261725986 0.261725986 

10 0.26172596942 0.26172597192 
11 0.26172597215 0.26172597183 
12 0.26172597180 0.26172597184 

m m 

_ _  m 

E 

band I band 1i" band "nT 

I I I I I ~ I i I , ~  
O. . I. 

Fig. 4. Attractor of Eq. (1.2) at b = b3 , c r .  

3. S E N S I T I V I T Y  T O  I N I T I A L  C O N D I T I O N S  

(a) I n  this sect ion we shall  first d iscuss  the average  b e h a v i o r  of 
I~x~/~Xo]. As we have  a l r eady  p o i n t e d  out ,  we expect  a un ive r sa l  power  

b e h a v i o r  for the geomet r ic  average:  

] ; XWo x ln 
~ ))tl 

= e x p  ~ ]  (dxwo(x)lnlF'(f(1)(x 
i = 0 - "  j 

.-I )1] =exp  ~=ofdXw,(x)lnlF'(x (3.1) 

with 

F'(x) = ~ x  F ( x ;  bcr ) (3.2) 
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Let us restrict ourselves again to the Feigenbaum map F = g, and 
define 

= fdx  w, (x)ln I g'(x)] (3.3) an 

such that 

1 � 8 9  ~ 

Now, using Eqs. (2.8), (2.18), and (2.23), we find 

a f dxw.(-ax)lnlg'(x)l 
a2n ~ "2 xEJi,2 

+ (  dxw2,_,(x)lnlg'(g(x)) I (3.5) 
,JxEJi,2 

For large n, we can assume w2,_ ~(x) ~ w2,,(x ) for the same reasons for 
which we could assume Eq. (2.20), and, using Eq. (2.13), we finally get 

a d g(2)(x)J 

1 (3.6) = ~a~  

This suggests that, on the average, 

a, ~ --Y (3.7) 
n---~ oo /'/ 

with some constant ~, and we get the proposed scaling law 

I (3.8) 
I ~x0 ~ 

Unfortunately, we were not able to calculate the critical exponent ~, 
analytically. A very rough estimate is obtained in the following way: we 
know that Wn(X ) is concentrated in domains I~ with k-(lnn)/(ln2) 
distributed according to a distribution 

Pk(n) = p ( k -  Inn ) (3.9) 

which can be read off from Fig. 3. We now approximate w, (x) by a sum of 
6 functions located at the periodic orbits in I~, with weights Pk(n). From 
the renormalization group equation (2.13), one finds 

2 ~ 

g (xk,i)l = d _ ( 2 ~ x ,  ,I I-I[ ' * ~x ~; ~ k,i)[ = ]g'(x~,,)[ (3.10) 
i = l  
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and from Ref. 6 we know that 

We then get 

c ~- [ g ' ( x ~ , ) l  = 1 . 6 0 1 1 9 . . .  (3.11) 

7 ~ l n c E  p(k) k - 7 -  ~0 .8 6  (3.12) 

In order to obtain a more precise value, and to check the scaling 
behavior, we again have performed Monte Carlo calculations. 

After choosing x 0 at random, we have calculated ln[Oxn/OXo[ for n up 
to 213 -- 8192, and have made linear fits 

In 0x~ ff~x0 = const N + VNlnn for 1 < n < N (3.13) 

The resulting slopes ~/N are shown in Fig. 5 for the logistic equation (1.2) at 
b = bl,cr and at b = b 3 .... and for Eq. (1.3) at b = bl,cr. In all these cases, we 
have performed 10 4 runs. 

For the curves 1-3, the initial distribution has been chosen constant 
for 0 ~< x o < 1. We see that the two limit points of period 2 k cycles behave 
similarly, but at b3,cr the behavior is completely different: [Oxn/~Xol in- 
creases at first dramatically, and only for very large n one observes the 
expected power behavior. This is not surprising. The attractor for Eq. (1.2) 
at b = b3,cr, shown in Fig. 4, lies in three relatively narrow bands, each of 
which qualitatively resembles Fig. 2. If x 0 is in one of these bands, x3, 
approaches the attractor in the way described above. If not, the first few 
iterates will jump essentially chaotically, until the first xn falls into one of 
the bands. During this chaotic evolution, 
iterations, [3x~/OXo[ increases roughly 
Lyapounov exponent of ~0.5.  Only for 
power behavior. 

In order to check this, we have also 

Wo(X) = 10-  o ( 0 . 0 5  

which lasts in the mean for ~ 15 
exponentially, with an effective 
n >> 15, we observe the universal 

performed calculations with 

- Ix  - 0 . 5 [ )  ( 3 . 1 4 )  

In this way, we strongly suppress the transient chaotic phase, and the 
resulting curve (4) in Fig. 4 is indeed similar to the curves obtained for the 
period 2 k cycles. 

The value of 7 resulting from these calculations is y = 0.60 _ 0.01. 
(b) Next, we want to study the asymptotic behavior of 

A ~ l x  n - y n [  forA o<<1 
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1.2 

1.0 

.8 

VN 

.6 

j ! 
~ 

0 

i I 

1JO 10 2 10 3 IC) z' 
N 

Fig. 5. Coeff ic ients  "/N in l inear  fits, Eq. (3.13), to ln]Ox,,/OXot. The  curves are d rawn  only  for 

gu idance .  Curve  1: Eq. (1.2), b = bl,cr = 3.56994567 . . . .  Wo(X) = O(x)" O ( l -  x). Curve  2: 

Eq. (1.3), b = bl.cr = 2.3002283 . . . .  Wo(X ) = O(x)" 0(1 - x). Curve  3: Eq. (1.2), b = b3,cr = 

3.84943368 . . . .  Wo(X ) = O(x)" 0(1 - x). Curve  4: Eq. (1.2), b = b 3 .... Wo(X ) = 10. 0(0.05 - 

Ix - 0.51). 

F o r  suff iciently small  A o, the two poin ts  x 0 a n d  Y0 will be  in the same 

in terval  Ik, i. Similarly,  x~ a n d  Yn will be  in the same Ikj, as long as A n is 
much  smal ler  than  the average  d i s tance  d n f rom the a t t rac to r  discussed in 
the last  section. In  this case A n will increase  like An~AonL Since on the 
o ther  h a n d  dn~n -~, bo th  lengths will become  c o m p a r a b l e  for  

n .~ ~ ~ A o l/(~+~) (3.15) 

Af te r  this, A n can  no longer  increase  since x .  and  y .  are  b o u n d  to r ema in  in 
c o m m o n  intervals  Jk,i with k ~ (In ~ ) / ( l n  2), the mean  length of which is of 
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the same order of magnitude as dn. Thus we finally obtain 

A o n 7 for n << ,fi (3.16) 
( m n > ~  A~/(e+'f) for n >> fi 

Again, we have checked this by Monte Carlo calculations. Results for 
Eq. (1.2) with b = bl,c, are shown in Fig. 6. There, we have plotted the 
geometric average distance for fixed ho, averaged over l0 4 runs and over 
2 k < n < 2 k+ 1, k = 0, l, 2 . . . . .  10. We clearly see the expected behavior. 
For large n we get (mn)~m0"77-+0"01 , which is in perfect agreement with Eq. 
(3.16) and the previous values for e and 7. 

(c) As a last topic, let us study the distribution of 10x./aXol. As we 
have already pointed out, its arithmetic average increases faster than a 
power of n. Thus, the distribution must be rather broad. 

-1 

- 2  

- 4  

- 7  

h 

"~'-9 
t -  

-10 
-11 = 

i i " \  

./ 
J 

/ -5 ./. 
1" f "  

~ 

/ /  / /  
/. j . t - . ~  

./" ./ 
/ / -. 

I" / .  / . j l "  
- 1 2 / / y  / 
-13 . / .  
-1~ /. 
-1i / .  

/ 
-16 J '  

-17 . . . . . . . . . . .  
0 5 10 

A o = 10 -1 

A o = 10 -2 

A o = 10 -3 

A o = 10 -4 

"&o = 10-5 

A 0 = 10 -6 

A o = 10 -7 

Fig. 6. Geomet r i c  average  values  of A = Ix n - y n ]  for Eq. (1.2) a t  b = bl,cr. Averages  are  
t aken  over  0 < x o < 1 - A 0, YO = Xo + ho [with Wo(Xo) = const], and  over  2 k ~< n < 2 k+ 1. 
Again ,  the l ines are d rawn only  to guide  one 's  eyes. The  lef tmost  points  represent  ~ .  
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In the next section we shall present a non-deterministic model which 
shows all essential features discussed above and which also allows to 
calculate the asymptotic behavior of all cumulants of ln[axn/OXol, 

~,(n) = f dXoWo(Xo)ln -~Xo 

[~ f  XoWo(Xo  

.3(n) = fd~o  Wo(Xo) In 3 ~ ( n )  ~](~) - .?(n) 

etc. We shall find that 

with 

#g (n),2"oo Yk" lnn (3.18) 

ykk~,oo constX ( k -  1)! (3.19) 

Thus all cumulants are proportional to In n, but the coefficients diverge so 
rapidly that the arithmetic mean of IOxn/Ox01, given by 

fdxowo(X)l-~x~ ]~x,, = exP[k=,  ~ ~ /~k(n)] (3.20) 

increases faster than any power of n. 
Unfortunately, we were not able to verify this by more rigorous 

arguments, but we have performed again Monte Carlo calculations, for Eq. 
(1.2) with b = bl,cr. 

The Cesaro averages 
n 

1 ~k(n) = n  ~ /xk(P) (3.21) 
p = l  

are shown in Fig. 7 for k = 1 to 4, and n ,K< 8192. The results are based on 
10 4 r u n s  with a flat distribution of x 0 in [0, 1]. Indeed, we have performed 
the averages independently for x 0 ~ [0.25,0.75] and for x 0 E [0,0.25] U 
[0.75, 1]. As expected, the differences due to these different initial condi- 
tions vanish for large n. 

While the first two cumulants clearly increase linearly with In n, such a 
linear increase is not evident for ~3 and ~4. This is not surprising as 
nonleading effects are larger for larger k. The slopes for large n are, 
however, compatible with Eq. (3.19), for k/> 2: the broken lines in Fig. 7 
have slopes 2.05 x (k - 1)!, and fit the behavior of ~k(n) rather well. 
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Fig. 7. Cesaro averages of the cumulants  p,k(n) of lntSx,/OXol. The broken lines have slopes 
const  • (k - 1)!, as predicted for the slopes of ~k(n) when n---> oo. 

4. A PROBABILISTIC MODEL 

For  critical mappings (1.1), the evolution x 0 ~  x 1 ~ . . .  ~ x , ~  �9 �9 . 
is, of course, deterministic. Furthermore,  the dependence on the initial 
conditions is not  sensitive in the sense of Ref. 11. However,  we have seen 
that some quantities are so sensitive that  it does not  seem practical  to 
follow the evolution exactly. Instead, we shall present in this section a 
nondeterministic (i.e., probabilistic) model  which shows all essential fea- 
tures found above. 

After n iterations of a randomly  chosen x 0, x,  will be located in one of 
the intervals I 2 If  i < 2 k, it will be mapped  into Ik,i+ 1 in the next k,i" 
iteration. If i = 2 g, it will be mapped  either into Ik, ] or into some Ik,or with 
k' > k. Which of these two possibilities occurs, and what  are k' and i' in 
the latter case, will depend on x 0 in a very sensitive way. Thus in our model  

2 The chance that it is exactly on  the attractor is zero. 
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we shall assume that the jump from I k to 1 k, occurs randomly, with given 
probabilities, but independently of the exact value of x, .  Consequently, the 
state of the system is fully described by the index k of the interval Ik, i ~ G,  
and we assume that the evolution of the probabilities Pk(n) = prob(x~ E l k )  
is Markoffian, 

Pk(n + 1 )=  ~ Wk,k,Pk(n ) (4.1) 
k '  << k 

It is easy to see that, asymptotically, Pk(n) must decrease exponentially 
for fixed k, 

.--, c -n/2~ (4.2) G(n) 
k fixed 

with c given by Eq. (3.1 I); in fact, the tail of Pk(n) for large n is dominated 
by orbits which are close to the kth periodic orbit for most iterations. This 
implies that 

In c 1 -  rVk, k = Wk'k  ' (4.3) 
k ' = k + l  

For simplicity and definiteness, we shall take 

W k k , = l n c 3 k k , + l + ( 1  - l n c )  , ~ , ~ 3~y (4.4) 

Let us now assume that x 0 E Ik0, i.e., P~(0) = 3~,k0. In order to get the 
asymptotic behavior of Pk(n), we need the eigenvalues and eigenvectors of 
Wk,k.. The eigenvalues are 

In c 
h i = 1 2 i , i = 0, 1, 2 . . . .  (4.5) 

The right-eigenvector u ~ corresponding to ~0 is easily found to be 

0 ( - 2 )  k 
u k = --= r~, k = 0, 1,2 . . . .  (4.6) 

(2 1)(2 1 ) . . . ( 2 -  1) 

The other right-eigenvectors u i are simply 

i (rk_ i f o r k >  i 
Uk= ~0 f o r k < i  

(4.7) 

The left-eigenvectors v i are 

i { 0 for k > i (4.8) 
vk=  st_ ~ fork-<<i 

with 

s o = 1 (4.9a) 
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and 

S k "~- [(1 -- 2--k)(1 -- 2 -k+l )  " ' "  (1 - 2 - ' ) ] - '  (4.9b) 

Notice that indeed (v i, uO = 8ij. 
Using these results, we get 

Vk(n ) = (Wn)k,ko 

i i 
= Uk~k inl)ko 

i = 0  

k n 

=i~=kork_i(1 lnc)2 i si - ko (4.%) 

The asymptotic behavior for n ~ oo and k >> k 0 is dominated by contribu- 
tions with i ~ k. Using the fact that 

l i m s i = l  2 4 8 16 
i---~ 1 3 7 15 

= 3 . 4 6 3 ' ' '  --/3 (4.10) 

we finally get 
oo 

cJ ~ - n 2  j - k  e ,(n)n oo 
- - p ( k -  Inn ~ - )  (4.11) 

This shows all wanted properties. First, it is a function of n//2 k only, 
and thus it satisfies the crucial relation (2.25). Notice that the present model 
is a kind of one-sided random walk model (with Inn ~ t, k ~ x), and it 
might seem strange that the evolution is dispersion-free. It follows, however, 
from the fact that the transition probability per unit Inn increases linearly 
with n, while it decreases exponentially with k. Secondly, it is independent 
of k0: this is a necessary condition if we want universal behavior, indepen- 
dent of the initial distribution Wo(X ). 

The above result implies that the model indeed shows the properties 
discussed in Section 2. In order to estimate the asymptotic behavior of 
axn/aXo, we have to add a further assumption. Referring to the discussion 
leading to Eq. (3.12), we assume that 

] ~Xn+l c2 k for x E I k (4.12) 

i.e., we replace [aXn+ l/axn[ by its average value at the periodic orbit in I k. 



Some More Universal Scaling Laws for Critical Mappings 715 

The cumutants/_tk(n ) are obtained from the generating function 

G(z,n) = exp ~.w /~k(n) 
1 

= fdxowo(Xo) Ox~ (4.13) 

In our Markoffian model we get 

= Wkn_,, n_2 " " " 

k.>~k,~_l>~ "'" >~ko 

• Pko(0) �9 cZ(2-kO+2-kl+ . . .  +2-kn-I) 

= ~ [lYV(Z)]k,koPko(O ) (4.14) 
k~ko  

with " 

I~k,k,(Z) = Wk,k," C z:-k (4.15) 

The eigenvalues of if; are simply 

~i(z) = (1 - ln___s i ]]cZ/2 i (4.16) 

The eigenvectors are less simple, but for an estimate of the asymptotic 
behavior we can restrict ourselves to large k o and large i. There, 

5~(z) ~ rk_ ] .(1 - z) -~ (4.17) 

and 

~ k ( Z )  ~--~ Si_ k " (1 - z) k (4.18) 

The generating function then becomes 
0 0  

G(z,n),~-;~ k__~ko(1 -- z)k~ -- z)n) (4.19) 

Since the width (in k) of the distribution Pk (n) stays constant for n ~ oo, we 
can approximate it by a 6 function, and finally obtain 

G ( z , n ) , ~  (1 - z)tnn/lnZx (some function of z) (4.20) 

from which we get 

k~ 
/zk(n) ~ k-i-n--2" Inn (4.21) 

The factor 1/In 2 ~ 1.44 is, of course, an artifact of the simple Ans~tze (4.4) 
and (4.12), but otherwise both the linear behavior in Inn and the increase 
-~(k - 1)! seem to be realistic. 
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5. C O N C L U S I O N S  

We have shown that the long-time behavior of the evolution under 
critical mappings is governed by scaling laws reminiscent of critical behav- 
ior ("critical slowing down"). Our arguments are only heuristic, but  they 
are supported by extensive Monte Carlo calculations. Our results underline 
once more the similarity between critical mappings and other critical 
phenomena. 

Critical maps are not sensitively dependent on initial conditions in the 
sense of Ref. 11. But as we approach the attractor closer and closer, finer 
and finer details are relevant for the further approach which thus becomes 
sensitively dependent on x 0. 

In experimental situations, this would mean that the approach towards 
the attractor, and the increase of the distance between two close-by points, 
are essentially random processes. Indeed, we have found that all our main 
results follow already from a simple probabilisfic model which depicts the 
evolution as a Markoffian random walk. 

APPENDIX 

In this Appendix we shall study the asymptotic behavior of the total 
variation A n of the nth iterate of the Feigenbaum (6) scaling function g(x) 
between 0 and 1, 

d g(n)(x ) (A.1) An --foldx -~x 

We denote by x 0 (=  0 . 8 3 2 . . .  ) the zero of g(x) in this interval, and write 

A n ~ A (1) -[- A (2) (1.2)  

with 

d g(n)(x) ( A . 3 )  

d 

Notice that the n extrema of g(n)(x) on [0, 1[ are precisely the n first iterates 
of the point x = 0 which satisfy the Feigenbaum scaling relation 

_ 1 g (") (0) ,  g(Zn)(0) = 

From this one easily sees that for  n / >  1 

A(l) = A n n + l  

a -- 2.5029. �9 �9 (A.4) 

(A.5) 
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and 

Furthermore, 

so that 

and 

and 

1 A  , = 

A2 ~+] = A2" + 1 A  
o~ 

A2. - 1 < A2n < A2n - 1 -I- ___1 A o/ n 

Let us define 8. (n = 1,2 . . . .  ) by 

6 1 = 1 +  1 
o~ 

1 8 8 . = 6 . _ ] + ~  t./21, n />2 

where [a] is the largest integer < a. Then 

~[(n+l)/2] • An < 8n 

From Eq. (A.11) one verifies that, for large n, roughly 

8 . ~ e x p / ~ ] ( l n  n) 2 

and hence Eq. (1.13) holds at least for F(x, her ) = g(x). 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 
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